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ABSTRACT 

Theoretical analysis is given for heat-flux differential scanning calorimetry, based on a 
unified model which is applicable also to classical differential thermal analysis and power- 
compensated differential scanning calorimetry. The equations governing heat flow within the 
system are solved analytically on the assumption that the values of heat capacity and of 
thermal conductivity are constant. The temperature-lag of the sample is evaluated, and the 
method of estimating the actual temperature is given in the case of the first-order phase 
transition. 

INTRODUCTION 

Three types of dynamic differential methods have been widely used to 
study thermal properties of materials: classical differential thermal analysis 
(DTA), power-compensated differential scanning calorimetry (DSC), and 
heat-flux DSC. As the instrument for each of these methods is based on a 
fundamentally different principle, particular attention must be paid to 
analyze the result (the curve recorded in the chart). In classical DTA, 
thermocouples are inserted into the sample and the reference material both 
of which are placed at equivalent positions in the block. Because the small 
beads of the thermocouple junctions are in direct contact with the sample 
and the reference material, the temperature of the sample can be derived 
easily from the experimental result. Under such conditions, however, the 
peak caused by a phase transition is dependent on the thermal conductivity 
of the sample and the enthalpy of transition can hardly be estimated 
quantitatively. In power-compensated DSC, the additional electrical power 
to keep the sample and the reference at the same temperature is recorded, 
and the heat capacity and the enthalpy of transition are obtained directly [l]. 
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In this case, the quantification is guaranteed by the first law of thermody- 
namics. Since heat-flux DSC [2,3] has been developed from DTA, it is also 
called “quantitative DTA”. The beads of the thermocouple junctions are 
located on the surfaces of the vessels containing the sample and the reference 
material. The temperature difference recorded is proportional to the heat-flux 
difference between the sample and the reference material. Thus, the enthalpy 
of transition can be estimated if the thermal conductivity governing the 
heat-flux is known beforehand; the condition for heat-flux is not sample-de- 
pendent but is dependent on the instrumental constants. In both the DSC 
methods, however, the temperature measurement is made outside the sample 
holder, and the actual sample temperature is different from the recorded 
temperature. 

Recently, Mraw [4] has presented a very simple model which is applicable 
to heat-flux DSC as well as to classical DTA [5] and power-compensated 
DSC [6] for a unified theoretical analysis. In this paper, the exact analytical 
solutions of the equations are given only for heat-flux DSC on his model, as 
our solutions for classical DTA and power-compensated DSC are identical 
with those reported already by Gray [6] based on different models. Evalua- 
tion of the temperature-lag of the sample is shown in the case of the 
first-order phase transition in which the actual temperature is obtained from 
the analysis of the slope of the peak. 

MRAW’S MODEL 

A sketch of Mraw’s model [4] is reproduced in Fig. 1, where the shaded 
regions are the parts having heat capacity values, while the unshaded regions 
have no heat capacity, but offer thermal resistance. In Fig. 1, T and C 
denote temperature and heat capacity, respectively, and the subscripts are 
defined as follows: h, heater block; s, sample; sm, temperature measuring 
station of the sample side; r, reference; rm, temperature measuring station of 
the reference side. R is the thermal resistance between the heater block and 
the temperature measuring station (denoted by the subscript sm or rm) and 
R’ is that between the temperature measuring station and the sample (or 
reference material). An important difference between this model and the 
previous models [5,6] is that there are two thermal resistances separated by 
the temperature measuring station between the heater block and the sample 
(or reference material). No temperature gradient is considered in any part of 
this system. This model is applicable to all three types of instrument: 
classical DTA, power-compensated DSC, and heat-flux DSC. 

Assuming the absence of temperature-dependence in the heat capacities 
and the thermal resistances on the basis of this model, the heat flows dq/dt 
between the heater block and the temperature measuring station and dq’/dt 
between the temperature measuring station and the sample (or reference 
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Fig. 1. Sketch of Mraw’s model [4]. T,, temperature of the heater; T,,, temperature of the 
sample-temperature measuring station; T,, temperature of the sample; C,,, heat capacity of 
the sample-temperature measuring station; C,, heat capacity of the sample; R,, thermal 
resistance between the sample-temperature measuring station and the heater; R:, thermal 
resistance between the sample and the sample-temperature measuring station. T,,, T,, C,,, 
C,, R, and Ri have analogous meanings for the reference side. 

material) are represented as follows. For the reference side, the equations are 

(1) 

(4 

Using Newton’s law of cooling, these can be written as 

(3) 

(4 

For the sample side, the differential equations are 

dT, d9S_C dT,In 
dt sm dt -+C,x 

or 

During a first-order phase transition at T, = T,,, the equations are 

dTWn f AHd” dqs - c 
dt sm dt dt 

(5) 

(6) 

(7) 

(8) 

(9) 
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+,(T,-T,,)=AHg 
s 

where AH is the enthalpy of 
transformed part of the sample. 

transition and x is the fraction of the 

EXACT SOLUTIONS 

In this section, we solve the equations of the heat-flux DSC based on 

02) 

Mraw’s model. In the idealized system, we can write R, = R r = R and 
C,, = C,, = C, on the assumption of symmetrical construction of the instru- 
ment. The temperature of the heater block, Th, is assumed to change at a 
constant rate a, i.e., we can write 

T,, = Tf + at (13) 

ti and t, are the times at which the transition starts and is completed, 
respectively; T,( ti) = T,( tf) = T,,, X( ti) = 0 and x( tf) = 1. 

Formal solution of eqn. (8) is 

where C’ is an integral constant. Differentiation with respect to t after 
substitution of eqn. (14) into eqn. (7) gives a following second-order dif- 
ferential equation of T,, only 

d2T dT __._!!?+A-? 
dt2 dt 

+ BT,, = Ct + D 

1 

B = RR’,C&,, 

a 

’ = RR’,C,C, 

Solution of eqn. (15) is 

c,,, = (~,i exp( usIt) + as2 exp( qZt) + at + Ti - aR( C, + Cm) 

(15) 

(16) 
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where (~,t and (Y,~ are integral constants determined by boundary conditions, 
and w,t and w,~ are roots of the following quadratic equation 

x2+Ax+B=0 (17) 

For physical consistency, osl and ws2 must be real and smaller than zero. 
This is confirmed as follows. Explicit forms of w,, and ~3,~ are expressed by 

1 1 

+ R’,C, + RC,,, 

f 2RR)CC [ ( R’,Cs - RC,,,)’ + RC,( RC, + 2&C’, + Km)]“* 
s s m 

Equation (17) always has two real roots, and one of them always has a 
negative value. Next, we define f(x) 

f(x) = x2 + Ax + B (18) 

Since f(0) = B > 0, we have proved that w,, and ws2 are real numbers and 
that they have negative values. 

After the substitution of eqn. (16) into eqn. (14). T, is immediately 
obtained by integration as 

+at + Tt - a( RC, + RC, + RLC,) (19) 

where j3, is an integral constant determined by a boundary condition. 
Since eqns. (3) and (4) are of the same type as eqns. (7) and (8) solutions 

for eqns. (3) and (4) are obtained in analogous formulae by exchanging the 
subscript s for r. 

Solutions of eqns (11) and (12) are 

+&(t-ti)‘+ &(T:-T.)-;RR:‘22 (t-t,) (21) b 1 : 
where y is an integral constant determined by a boundary condition. 

Since eqns. (7) and (8) show that dT,,/d t must be continuous if T, and 
qrn are continuous, the boundary conditions are that 7;, T,, and dT,,/dt 



should be continuous at all times. These are written formally as 

T(r’) = T,(t’). 

a,] exp( 46’) + as2 exp( ~,~t’) = Fi (4 (22) 
WG exp( M’) + ff,2w,2 exp( as2t’) = F2 (0 

From these equations, (~,i and (Y,~ are derived as follows 

asI = h2 - %-’ exp(-w,,t’)[w,,F,(t’) -F2V)l 

CY s2 = bs2 - %J1 exP(-W’)[F*W) - %w')l (23) 
An example of the theoretical signal of the first-order phase transition is 

304 

shown in Fig. 2. It begins to rise gradually when the transition starts and its 
slope increases until the transition is completed, and then the slope decreases 
gradually. The decay of the signal is represented by the sum of the two 
exponential functions. The characteristic features of the signal in heat-flux 
DSC are (1) the starting of the transition corresponds to the point at which 
the curve deviates from the stationary baseline (ti in Fig. 2), (2) the 
completion of the transition is given by the first inflection point (tr in Fig. 
2) and (3) therefore, the maximum of the signal comes after the completion 
of the transition (t, in Fig. 2). 

slope. aR/(R+ R;) 

‘i ‘e 4 ‘rn -t 

Fig. 2. Calculated signal of the first-order phase transition in heat-flux DSC. The upper is the 
temperature of each part of the system, and the lower shows the peak in larger scale. The 
transition starts at t, and ends at t,. t, is extrapolated onset time and t, is the time at which 
the peak height is maximum. 
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The area under the peak is calculated as follows. It is assumed for 

simplicity that Q, ar2, & Q, aS2, and & are zero before ti and ti = 0. 
From this condition, the following equations are derived 

T,,=at+ T,O-aR(C,+C,) (24 

T,,=at+ T,O-aR(C,+C,) 

i 
Ct < ti> 

(25) 
T, = at + T,!f’ - a( RC, + RC, + R’,C,) (26) 

The baseline is aR (C, - C,). At t = 0, T,, and dT,,/d t must be continuous. 

Thus, we obtain the equation 

+~t+T,OaR(C,+C,) (ti<t<t,) 
s 

(27) 

At t = t,, T,, and dT,,/dt must be continuous, i.e. 

as1 ex~(Wr > + aS2 exp(oS24 = aR2R’cm2 [I - exp( - $$-Jtf)] 

CR + 4) 

aR 

- KQ 

w+l exp( WA ) + ffs2ws2 exp( us2tf ) = *[ exP(-&$$)-I] 

The values of CQ and I_Y,~ are given by formulae (23). The area under the 
peak is 

S[ 
O” T,,- T,,-aR(C,-C,)]dt 

0 

= J~‘[T,,-T,,-uR(C,-C,)~~~+/“[~~- T,,-aR(C,-C,)]dt 
ff 

+ aR2 (q)‘[ exp(-St,)-11 
R’,(R + R’,) R + R, (29) 
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The enthalpy of transition is given by 

(30) 

The area under the peak is RAH. Thus, we can estimate the enthalpy of 
transition (AH) from the peak since R is an instrumental constant. 

ACTUAL TRANSITION TEMPERATURE 

As the temperature measuring station is separated by the thermal resis- 
tance from the sample in the two types of DSC, there always is the 
temperature-lag of the sample in the measurements. The temperature dif- 
ference (cm - T,) in stationary state is given as aR:C, in power-com- 
pensated DSC and also in heat-flux DSC. Here, C, and a can be easily 
estimated. However, the value of Rt must be calculated by analyzing the 
signal recorded in the measurements. In the case of power-compensated 
DSC, the evaluation of R’, is straightforward. The slope of the peak due to 
the first-order phase transition is a/R’,. 

On the other hand, the situation is not so simple in heat-flux DSC. From 
formulae (16) and (19), the peak due to the first-order phase transition is 
given by subtracting the time-independent terms 

aR 
mt-vxp - ( g$y (31) 

s 

The calculated signals are shown in Fig. 2. The signal deviates from the 
baseline at ti when the transition starts. If a sufficiently long time is needed 
for completion of the transition and the second term in formula (31) is 
negligible, R’, can be evaluated by using the maximum slope of the peak, 
that is aR/( R + R’,). Thus, we conclude that the actual transition tempera- 
ture of the sample is evaluated by analyzing the peak. The transition ends at 
t, which is the inflection point of the curve. 

It is important to note that the extrapolated onset time (t, in Fig. 2) does 
not correspond to the start of phase transition. 

SUMMARY 

The simple theoretical model presented by Mraw [4], which is applicable 
to heat-flux DSC as well as classical DTA and power-compensated DSC, has 
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been analytically solved on the assumption that the heat capacity and the 
thermal conductivity are constant. The results for classical DTA and for 
power-compensated DSC are identical with those reported by Gray [6]. The 
equations for heat-flux DSC are solved on the basis of this model. It is 
shown that the temperature-lag of the sample can be estimated by analyzing 
the curve. The method of evaluating the actual temperature is given for the 
first-order phase transition. 
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